Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
26
27
28
29
30
31
1
2
3
4
6
7
8
10
11
12
13
14
15
17
18
20
21
22
24
25
28
29
30
31
1
2
3
4
5
Food and Beverages
2021-07-26 - 2021-07-27    
12:00 am
The conference highlights the theme “Global leading improvement in Food Technology & Beverages Production” aimed to provide an opportunity for the professionals to discuss the [...]
European Endocrinology and Diabetes Congress
2021-08-05 - 2021-08-06    
All Day
This conference is an extraordinary and leading event ardent to the science with practice of endocrinology research, which makes a perfect platform for global networking [...]
Big Data Analysis and Data Mining
2021-08-09 - 2021-08-10    
All Day
Data Mining, the extraction of hidden predictive information from large databases, is a powerful new technology with great potential to help companies focus on the [...]
Agriculture & Horticulture
2021-08-16 - 2021-08-17    
All Day
Agriculture Conference invites a common platform for Deans, Directors, Professors, Students, Research scholars and other participants including CEO, Consultant, Head of Management, Economist, Project Manager [...]
Wireless and Satellite Communication
2021-08-19 - 2021-08-20    
All Day
Conference Series llc Ltd. proudly invites contributors across the globe to its World Convention on 2nd International Conference on Wireless and Satellite Communication (Wireless Conference [...]
Frontiers in Alternative & Traditional Medicine
2021-08-23 - 2021-08-24    
All Day
World Health Organization announced that, “The influx of large numbers of people to mass gathering events may give rise to specific public health risks because [...]
Agroecology and Organic farming
2021-08-26 - 2021-08-27    
All Day
Current research on emerging technologies and strategies, integrated agriculture and sustainable agriculture, crop improvements, the most recent updates in plant and soil science, agriculture and [...]
Agriculture Sciences and Farming Technology
2021-08-26 - 2021-08-27    
All Day
Current research on emerging technologies and strategies, integrated agriculture and sustainable agriculture, crop improvements, the most recent updates in plant and soil science, agriculture and [...]
CIVIL ENGINEERING, ARCHITECTURE AND STRUCTURAL MATERIALS
2021-08-27 - 2021-08-28    
All Day
Engineering is applied to the profession in which information on the numerical/mathematical and natural sciences, picked up by study, understanding, and practice, are applied to [...]
Diabetes, Obesity and Its Complications
2021-09-02 - 2021-09-03    
All Day
Diabetes Congress 2021 aims to provide a platform to share knowledge, expertise along with unparalleled networking opportunities between a large number of medical and industrial [...]
Events on 2021-07-26
Food and Beverages
26 Jul 21
Events on 2021-08-05
Events on 2021-08-09
Events on 2021-08-16
Events on 2021-08-19
Events on 2021-08-23
Events on 2021-09-02
Latest News

Nov 19 : Georgia Tech Leads Effort to Convert EHRs Into Meaningful Data

georgia tech

Project will develop methods and algorithms to turn clinical health record databases into useful phenotypes

Ever since the adoption of electronic health records (EHRs), medical universities, hospitals and other health institutions have amassed enormous databases of information, comprising a diverse array of information such as diagnoses, medications and lab results.

While such databases promise to serve as rich resources for clinical research, the data tends to be difficult, time-extensive and costly to analyze. A new project funded by the National Science Foundation (NSF) aims to change that.

“As available now, databases of electronic health records are diverse and massive, but they are also messy and heterogeneous. There’s a lot of noise,” said Jimeng Sun, associate professor at Georgia Tech’s School of Computational Science and Engineering. “Our charge is to find ways to make the information more robust and easier to read, thus leading to meaningful clinical concepts without extensive labor and time.”

As part of the four-year, $2.1 million NSF research project, data analytic teams from Georgia Tech and the University of Texas, Austin, will develop algorithms and methods to convert the EHR data into meaningful clinical concepts or phenotypes focused on diseases and specific health traits. Vanderbilt University will provide initial EHR data and phenotype validation.

Resulting phenotypes will be refined and adapted in conjunction with data from Northwestern University so that the information and data can be used across multiple health institutions.

In addition to Sun, who serves as the lead principal investigator of the project, the team includes Bradley Malin and Joshua Denny, associate professors of biomedical informatics and computer science at Vanderbilt; Joydeep Ghosh, professor of electrical and computer engineering at Texas; and Abel Kho, associate professor of medicine-biomedical informatics at Northwestern.

Past efforts to create phenotypes from data tended to be costly and time-intensive. Several challenges face physicians and researchers in developing scalable phenotype methods. These include accurate patient representations, working with data across multiple dimensions, sufficient expert refinement and adaptability across multiple health institutions.

“Traditionally it takes six to 18 months to develop an algorithm for a single phenotype, which is too long,” Denny said. “There is also a tremendous need for developing high-throughput phenotyping methods that can directly model the interactions among heterogeneous information sources.”

The project will focus on three specific applications, including a system to accurately and effectively identify patients, even with multiple symptoms and health traits, for clinical research and developing predictive models for health studies.

The project can also provide effective phenotypes for genomic-wide association studies (GWAS). At present, health researchers can only work with one phenotype at a time. But this project will enable researches to quickly study multiple phenotypes jointly. Finally, those identified phenotypes can help analyze specific risk about patients, such as key health factors, exhibited by Type 2 diabetes patients.

In addition to developing the algorithms and methods, the professors will try to develop new health analytics curricula as a massive open online course (MOOC) and for tutorial sessions at conferences.

This research is supported by the National Science Foundation (NSF) under Award 1418511. Any conclusions or opinions are those of the authors and do not necessarily represent the official views of the NSF.

Source