Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
1
2
3
4
5
6
7
8
12:00 AM - DEVICE TALKS
9
11
12
13
14
16
18
19
20
21
22
23
24
26
27
28
29
30
31
1
2
3
4
DEVICE TALKS
DEVICE TALKS BOSTON 2018: BIGGER AND BETTER THAN EVER! Join us Oct. 8-10 for the 7th annual DeviceTalks Boston, back in the city where it [...]
6th Annual HealthIMPACT Midwest
2018-10-10    
All Day
REV1 VENTURES COLUMBUS, OH The Provider-Patient Experience Summit - Disrupting Delivery without Disrupting Care HealthIMPACT Midwest is focused on technologies impacting clinician satisfaction and performance. [...]
15 Oct
2018-10-15 - 2018-10-16    
All Day
Conference Series Ltd invites all the participants from all over the world to attend “3rd International Conference on Environmental Health” during October 15-16, 2018 in Warsaw, Poland which includes prompt keynote [...]
17 Oct
2018-10-17 - 2018-10-19    
7:00 am - 6:00 pm
BALANCING TECHNOLOGY AND THE HUMAN ELEMENT In an era when digital technologies enable individuals to track health statistics such as daily activity and vital signs, [...]
Epigenetics Congress 2018
2018-10-25 - 2018-10-26    
All Day
Conference: 5th World Congress on Epigenetics and Chromosome Date: October 25-26, 2018 Place: Istanbul, Turkey Email: epigeneticscongress@gmail.com About Conference: Epigenetics congress 2018 invites all the [...]
Events on 2018-10-08
DEVICE TALKS
8 Oct 18
425 Summer Street
Events on 2018-10-10
Events on 2018-10-17
17 Oct
Events on 2018-10-25
Epigenetics Congress 2018
25 Oct 18
Istanbul
Latest News

Reinforcement learning enhances AI in cybersecurity

AI algorithms and machine learning efficiently handle large volumes of data swiftly, aiding network defenders in sifting through numerous alerts to differentiate potential threats from false positives. Reinforcement learning plays a crucial role in the benefits AI offers to cybersecurity, mimicking human learning through experience and trial and error.

Reinforcement learning diverges from supervised learning by concentrating on agents learning from their own actions and feedback within a given environment. This concept revolves around maximizing learning capabilities over time by utilizing rewards and punishments, thereby enhancing future decision-making.

Application of Reinforcement Learning: The escalation of alert fatigue among Security Operations Center (SOC) analysts has emerged as a significant concern for Chief Information Security Officers, given the risk of burnout and high turnover rates. Solutions capable of filtering alert noise, enabling analysts to prioritize genuine threats, can save organizations valuable time and resources.

AI technologies play a pivotal role in combating large-scale social engineering, phishing, and spam campaigns by preemptively understanding and identifying attack kill chains. Given resource constraints, reinforcement learning proves advantageous in identifying sophisticated dynamic attacks by analyzing patterns from past failed and successful attempts.

Expanding beyond detection, reinforcement learning holds promise in predictive cybersecurity, leveraging past experiences and patterns to anticipate future threats. This proactive approach enhances cybersecurity by optimizing resource allocation, coordinating with existing systems, and deploying countermeasures effectively.

Challenges of Reinforcement Learning: The proliferation of networked devices poses a challenge for reinforcement learning in cybersecurity, compounded by remote work and personal device usage. Nonetheless, integrating reinforcement learning with the zero-trust approach can fortify IT security.

Access to adequate data presents another obstacle, particularly during the initial stages when limited data availability may distort learning cycles or prompt flawed defensive actions. Adversaries may exploit these limitations by manipulating data to deceive learning algorithms, emphasizing the need for careful integration of reinforcement learning in cybersecurity technologies.