Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
17
18
20
21
22
24
25
26
27
28
29
30
1
2
3
4
5
6
BARDA Industry Day
2020-10-27    
12:00 am
Organized by BARDA BARDA Industry Day is the annual meeting held to increase potential partner’s awareness of U.S. Government medical countermeasure priorities, interact with BARDA [...]
The Future of Insurance USA
2020-11-16 - 2020-11-18    
All Day
We’re excited to announce today the launch of The Future of Insurance USA (November 16-18 2020), an online 3-day conference by Reuters Events. The Future [...]
Geneva Health Forum 2020
2020-11-16 - 2020-11-18    
12:00 am
Geneva Health Forum 2020 The 8th edition of the Geneva Health Forum will take place from 16-18 November 2020. The thematic of the year will [...]
19 Nov
2020-11-19 - 2020-11-20    
12:00 am
The stage is set for a paradigm shift in healthcare. The opportunity exists to redefine healthcare in a way that transforms patient outcomes, drives efficiency [...]
The 2nd Saudi International Pharma Expo
2020-11-23 - 2020-11-24    
All Day
ABOUT THE 2ND SAUDI INTERNATIONAL PHARMA EXPO SAUDI INTERNATIONAL PHARMA EXPO offers you an EXCELLENT opportunity to expand your business in Saudi Arabia and international [...]
World Congress on Medical Toxicology
2020-12-01 - 2020-12-02    
12:00 am
World Congress on Medical Toxicology Medical Toxicology Pharma 2020 provides a global platform to meet and develop interpersonal relationship with the world’s leading toxicologists, pharmacologists, [...]
01 Dec
2020-12-01 - 2020-12-02    
All Day
International Conference on Food Technology & Beverages” at Kyoto, Japan in the course of Kyoto, Japan, December, 01-02, 2020 Theme of the Food Tech 2020 [...]
Biomedical, Bio Pharma and Clinical Research
2020-12-03 - 2020-12-04    
12:00 am
Biomedical, Bio Pharma and Clinical Research Conference Series LLC LTD cordially invites you to be a part of “2nd International Conference on Biomedical, Bio Pharma [...]
Events on 2020-10-27
BARDA Industry Day
27 Oct 20
Events on 2020-11-16
Events on 2020-11-19
Events on 2020-11-23
The 2nd Saudi International Pharma Expo
23 Nov 20
King Abdullah
Events on 2020-12-03
Latest News

Reinforcement learning enhances AI in cybersecurity

AI algorithms and machine learning efficiently handle large volumes of data swiftly, aiding network defenders in sifting through numerous alerts to differentiate potential threats from false positives. Reinforcement learning plays a crucial role in the benefits AI offers to cybersecurity, mimicking human learning through experience and trial and error.

Reinforcement learning diverges from supervised learning by concentrating on agents learning from their own actions and feedback within a given environment. This concept revolves around maximizing learning capabilities over time by utilizing rewards and punishments, thereby enhancing future decision-making.

Application of Reinforcement Learning: The escalation of alert fatigue among Security Operations Center (SOC) analysts has emerged as a significant concern for Chief Information Security Officers, given the risk of burnout and high turnover rates. Solutions capable of filtering alert noise, enabling analysts to prioritize genuine threats, can save organizations valuable time and resources.

AI technologies play a pivotal role in combating large-scale social engineering, phishing, and spam campaigns by preemptively understanding and identifying attack kill chains. Given resource constraints, reinforcement learning proves advantageous in identifying sophisticated dynamic attacks by analyzing patterns from past failed and successful attempts.

Expanding beyond detection, reinforcement learning holds promise in predictive cybersecurity, leveraging past experiences and patterns to anticipate future threats. This proactive approach enhances cybersecurity by optimizing resource allocation, coordinating with existing systems, and deploying countermeasures effectively.

Challenges of Reinforcement Learning: The proliferation of networked devices poses a challenge for reinforcement learning in cybersecurity, compounded by remote work and personal device usage. Nonetheless, integrating reinforcement learning with the zero-trust approach can fortify IT security.

Access to adequate data presents another obstacle, particularly during the initial stages when limited data availability may distort learning cycles or prompt flawed defensive actions. Adversaries may exploit these limitations by manipulating data to deceive learning algorithms, emphasizing the need for careful integration of reinforcement learning in cybersecurity technologies.