Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
30
2
4
5
6
8
9
10
11
12
13
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
World Congress on Medical Toxicology
2020-12-01 - 2020-12-02    
12:00 am
World Congress on Medical Toxicology Medical Toxicology Pharma 2020 provides a global platform to meet and develop interpersonal relationship with the world’s leading toxicologists, pharmacologists, [...]
01 Dec
2020-12-01 - 2020-12-02    
All Day
International Conference on Food Technology & Beverages” at Kyoto, Japan in the course of Kyoto, Japan, December, 01-02, 2020 Theme of the Food Tech 2020 [...]
Biomedical, Bio Pharma and Clinical Research
2020-12-03 - 2020-12-04    
12:00 am
Biomedical, Bio Pharma and Clinical Research Conference Series LLC LTD cordially invites you to be a part of “2nd International Conference on Biomedical, Bio Pharma [...]
NODE Health 4th Annual Digital Medicine Conference
2020-12-07 - 2020-12-12    
12:00 am
NODE.Health is delighted to announce the 4th Annual Digital Medicine Conference - Evidence Matters. Never before has the transformation of our healthcare system been more [...]
2020 Global Digital Health Forum
2020-12-07 - 2020-12-09    
12:00 am
Organized by Global Digital Health Network Digital health can be the great leveler – it can give anyone access to information about health and disease. [...]
International Conference on Cancer Treatment and Prevention
2020-12-14 - 2020-12-15    
12:00 am
Cancer Treatment Forum 2020 regards each one of the individuals to go to the "Cancer Treatment Forum 2020" amidst December 15, 2020 UK-Time Zone( GMT [...]
International Conference on Neurology and Neural Disorders
2020-12-14 - 2020-12-15    
12:00 am
International Conference on Neurology and Neural Disorders Neurology Research 2020 will join world-class professors, scientists, researchers, students, perfusionist, neurologist to discuss methodology for ailment remediation [...]
Events on 2020-12-03
Latest News

Reinforcement learning enhances AI in cybersecurity

AI algorithms and machine learning efficiently handle large volumes of data swiftly, aiding network defenders in sifting through numerous alerts to differentiate potential threats from false positives. Reinforcement learning plays a crucial role in the benefits AI offers to cybersecurity, mimicking human learning through experience and trial and error.

Reinforcement learning diverges from supervised learning by concentrating on agents learning from their own actions and feedback within a given environment. This concept revolves around maximizing learning capabilities over time by utilizing rewards and punishments, thereby enhancing future decision-making.

Application of Reinforcement Learning: The escalation of alert fatigue among Security Operations Center (SOC) analysts has emerged as a significant concern for Chief Information Security Officers, given the risk of burnout and high turnover rates. Solutions capable of filtering alert noise, enabling analysts to prioritize genuine threats, can save organizations valuable time and resources.

AI technologies play a pivotal role in combating large-scale social engineering, phishing, and spam campaigns by preemptively understanding and identifying attack kill chains. Given resource constraints, reinforcement learning proves advantageous in identifying sophisticated dynamic attacks by analyzing patterns from past failed and successful attempts.

Expanding beyond detection, reinforcement learning holds promise in predictive cybersecurity, leveraging past experiences and patterns to anticipate future threats. This proactive approach enhances cybersecurity by optimizing resource allocation, coordinating with existing systems, and deploying countermeasures effectively.

Challenges of Reinforcement Learning: The proliferation of networked devices poses a challenge for reinforcement learning in cybersecurity, compounded by remote work and personal device usage. Nonetheless, integrating reinforcement learning with the zero-trust approach can fortify IT security.

Access to adequate data presents another obstacle, particularly during the initial stages when limited data availability may distort learning cycles or prompt flawed defensive actions. Adversaries may exploit these limitations by manipulating data to deceive learning algorithms, emphasizing the need for careful integration of reinforcement learning in cybersecurity technologies.