Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
26
27
28
29
30
31
2
3
4
5
6
7
8
9
10
8:30 AM - HIMSS Europe
11
12
13
14
15
16
17
18
19
20
21
22
26
27
28
29
1
2
3
4
5
6
e-Health 2025 Conference and Tradeshow
2025-06-01 - 2025-06-03    
10:00 am - 5:00 pm
The 2025 e-Health Conference provides an exciting opportunity to hear from your peers and engage with MEDITECH.
HIMSS Europe
2025-06-10 - 2025-06-12    
8:30 am - 5:00 pm
Transforming Healthcare in Paris From June 10-12, 2025, the HIMSS European Health Conference & Exhibition will convene in Paris to bring together Europe’s foremost health [...]
38th World Congress on  Pharmacology
2025-06-23 - 2025-06-24    
11:00 am - 4:00 pm
About the Conference Conference Series cordially invites participants from around the world to attend the 38th World Congress on Pharmacology, scheduled for June 23-24, 2025 [...]
2025 Clinical Informatics Symposium
2025-06-24 - 2025-06-25    
11:00 am - 4:00 pm
Virtual Event June 24th - 25th Explore the agenda for MEDITECH's 2025 Clinical Informatics Symposium. Embrace the future of healthcare at MEDITECH’s 2025 Clinical Informatics [...]
International Healthcare Medical Device Exhibition
2025-06-25 - 2025-06-27    
8:30 am - 5:00 pm
Japan Health will gather over 400 innovative healthcare companies from Japan and overseas, offering a unique opportunity to experience cutting-edge solutions and connect directly with [...]
Electronic Medical Records Boot Camp
2025-06-30 - 2025-07-01    
10:30 am - 5:30 pm
The Electronic Medical Records Boot Camp is a two-day intensive boot camp of seminars and hands-on analytical sessions to provide an overview of electronic health [...]
Events on 2025-06-01
Events on 2025-06-10
HIMSS Europe
10 Jun 25
France
Events on 2025-06-23
38th World Congress on  Pharmacology
23 Jun 25
Paris, France
Events on 2025-06-24
Events on 2025-06-25
International Healthcare Medical Device Exhibition
25 Jun 25
Suminoe-Ku, Osaka 559-0034
Events on 2025-06-30
Latest News

Reinforcement learning enhances AI in cybersecurity

AI algorithms and machine learning efficiently handle large volumes of data swiftly, aiding network defenders in sifting through numerous alerts to differentiate potential threats from false positives. Reinforcement learning plays a crucial role in the benefits AI offers to cybersecurity, mimicking human learning through experience and trial and error.

Reinforcement learning diverges from supervised learning by concentrating on agents learning from their own actions and feedback within a given environment. This concept revolves around maximizing learning capabilities over time by utilizing rewards and punishments, thereby enhancing future decision-making.

Application of Reinforcement Learning: The escalation of alert fatigue among Security Operations Center (SOC) analysts has emerged as a significant concern for Chief Information Security Officers, given the risk of burnout and high turnover rates. Solutions capable of filtering alert noise, enabling analysts to prioritize genuine threats, can save organizations valuable time and resources.

AI technologies play a pivotal role in combating large-scale social engineering, phishing, and spam campaigns by preemptively understanding and identifying attack kill chains. Given resource constraints, reinforcement learning proves advantageous in identifying sophisticated dynamic attacks by analyzing patterns from past failed and successful attempts.

Expanding beyond detection, reinforcement learning holds promise in predictive cybersecurity, leveraging past experiences and patterns to anticipate future threats. This proactive approach enhances cybersecurity by optimizing resource allocation, coordinating with existing systems, and deploying countermeasures effectively.

Challenges of Reinforcement Learning: The proliferation of networked devices poses a challenge for reinforcement learning in cybersecurity, compounded by remote work and personal device usage. Nonetheless, integrating reinforcement learning with the zero-trust approach can fortify IT security.

Access to adequate data presents another obstacle, particularly during the initial stages when limited data availability may distort learning cycles or prompt flawed defensive actions. Adversaries may exploit these limitations by manipulating data to deceive learning algorithms, emphasizing the need for careful integration of reinforcement learning in cybersecurity technologies.