Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
26
27
28
30
2
8
9
10
11
12
13
14
19
21
24
26
28
29
30
1
2
3
4
5
6
Neurology Certification Review 2019
2019-08-29 - 2019-09-03    
All Day
Neurology Certification Review is organized by The Osler Institute and will be held from Aug 29 - Sep 03, 2019 at Holiday Inn Chicago Oakbrook, [...]
Ophthalmology Lecture Review Course 2019
2019-08-31 - 2019-09-05    
All Day
Ophthalmology Lecture Review Course is organized by The Osler Institute and will be held from Aug 31 - Sep 05, 2019 at Holiday Inn Chicago [...]
Emergency Medicine, Sex and Gender Based Medicine, Risk Management/Legal Medicine, and Physician Wellness
2019-09-01 - 2019-09-08    
All Day
Emergency Medicine, Sex and Gender Based Medicine, Risk Management/Legal Medicine, and Physician Wellness is organized by Continuing Education, Inc and will be held from Sep [...]
Medical Philippines 2019
2019-09-03 - 2019-09-05    
All Day
The 4th Edition of Medical Philippines Expo 2019 is organized by Fireworks Trade Exhibitions & Conferences Philippines, Inc. and will be held from Sep 03 [...]
Grand Opening Celebration for Encompass Health Katy
2019-09-04    
4:00 pm - 7:00 pm
Grand Opening Celebration for Encompass Health Katy 23331 Grand Reserve Drive | Katy, Texas Sep 4, 2019 4:00 p.m. CDT Encompass Health will host a grand opening [...]
Galapagos & Amazon 2019 Medical Conference
2019-09-05 - 2019-09-17    
All Day
Galapagos & Amazon 2019 Medical Conference is organized by Unconventional Conventions and will be held from Sep 05 - 17, 2019 at Santa Cruz II, [...]
Mesotherapy Training (Sep 06, 2019)
2019-09-06    
All Day
Mesotherapy Training is organized by Empire Medical Training (EMT), Inc and will be held on Sep 06, 2019 at The Westin New York at Times [...]
Aesthetic Next 2019 Conference
2019-09-06 - 2019-09-08    
All Day
Aesthetic Next 2019 Conference Venue: SEPTEMBER 6-8, 2019 RENAISSANCE DALLAS HOTEL, DALLAS, TX www.AestheticNext.com On behalf Aesthetic Record EMR, we would like to invite you [...]
Anti-Aging - Modules 1 & 2 (Sep, 2019)
2019-09-07    
All Day
Anti-Aging - Modules 1 & 2 is organized by Empire Medical Training (EMT), Inc and will be held on Sep 07, 2019 at The Westin [...]
Allergy Test and Treatment (Sep, 2019)
2019-09-15    
All Day
Allergy Test and Treatment is organized by Empire Medical Training (EMT), Inc and will be held on Sep 15, 2019 at Aloft Chicago O'Hare, Chicago, [...]
Biosimilars & Biologics Summit 2019
2019-09-16 - 2019-09-17    
All Day
TBD
Biosimilars & Biologics Summit 2019 is organized by Lexis Conferences Ltd and will be held from Sep 16 - 17, 2019 at London, England, United [...]
X Anniversary International Exhibition of equipment and technologies for the pharmaceutical industry PHARMATechExpo
2019-09-17 - 2019-09-19    
All Day
X Anniversary International Exhibition of equipment and technologies for the pharmaceutical industry PHARMATechExpo is organized by Laboratory Marketing Technology (LMT) Company, Shupyk National Medical Academy [...]
2019 Physician and CIO Forum
2019-09-18 - 2019-09-19    
All Day
Event Location MEDITECH Conference Center 1 Constitution Way Foxborough, MA Date : September 18th - 19th Conference: Wednesday, September 18  8:00 AM - 5:00 PM [...]
Stress, Depression, Anxiety and Resilience Summit 2019
2019-09-20 - 2019-09-21    
All Day
Stress, Depression, Anxiety and Resilience Summit is organized by Lexis Conferences Ltd and will be held from Sep 20 - 21, 2019 at Vancouver Convention [...]
Sclerotherapy for Physicians & Nurses Course - Orlando (Sep 20, 2019)
2019-09-20    
All Day
Sclerotherapy for Physicians & Nurses Course is organized by Empire Medical Training (EMT), Inc and will be held on Sep 20, 2019 at Sheraton Orlando [...]
Complete, Hands-on Dermal Filler (Sep 22, 2019)
2019-09-22    
All Day
Complete, Hands-on Dermal Filler is organized by Empire Medical Training (EMT), Inc and will be held on Sep 22, 2019 at Sheraton Orlando Lake Buena [...]
The MedTech Conference 2019
2019-09-23 - 2019-09-25    
All Day
The MedTech Conference 2019 is organized by Advanced Medical Technology Association (AdvaMed) and will be held from Sep 23 - 25, 2019 at Boston Convention [...]
23 Sep
2019-09-23 - 2019-09-24    
All Day
ABOUT 2ND WORLD CONGRESS ON RHEUMATOLOGY & ORTHOPEDICS Scientific Federation will be hosting 2nd World Congress on Rheumatology and Orthopedics this year. This exciting event [...]
25 Sep
2019-09-25 - 2019-09-26    
All Day
ABOUT 18TH WORLD CONGRESS ON NUTRITION AND FOOD CHEMISTRY Nutrition Conferences Committee extends its welcome to 18th World Congress on Nutrition and Food Chemistry (Nutri-Food [...]
ACP & Stem Cell Therapies for Pain Management (Sep 27, 2019)
2019-09-27    
All Day
ACP & Stem Cell Therapies for Pain Management is organized by Empire Medical Training (EMT), Inc and will be held on Sep 27, 2019 at [...]
01 Oct
2019-10-01 - 2019-10-02    
All Day
The UK’s leading health technology and smart health event, bringing together a specialist audience of over 4,000 health and care professionals covering IT and clinical [...]
Events on 2019-08-29
Events on 2019-08-31
Events on 2019-09-03
Medical Philippines 2019
3 Sep 19
Pasay City
Events on 2019-09-04
Events on 2019-09-05
Galapagos & Amazon 2019 Medical Conference
5 Sep 19
Galapagos Islands
Events on 2019-09-06
Events on 2019-09-07
Events on 2019-09-15
Events on 2019-09-16
Events on 2019-09-18
2019 Physician and CIO Forum
18 Sep 19
Foxborough
Events on 2019-09-22
Events on 2019-09-23
The MedTech Conference 2019
23 Sep 19
Boston
23 Sep
Events on 2019-09-25
Events on 2019-09-27
Events on 2019-10-01
01 Oct
Latest News

Skeletal stem cells regress when tasked with extensive regeneration

stem cells

New research from Stanford shows that skeletal stem cells in mice assume a more primitive developmental state in response to extensive regeneration needs and environmental cues.

Adult mouse skeletal stem cells in the jaw revert to a more developmentally flexible state when called upon to regenerate large portions of bone and tissue, according to a study by researchers at the Stanford University School of Medicine.

The finding is the first to show that mammalian adult stem cells can march backward along the developmental timeline in a process called de-differentiation to become more primitive in response to environmental signals. In particular, the cells appeared to regress to a cell type that normally occurs within weeks of conception in humans and that give rise to the bones, cartilage and connective tissue of the head and face.

The results suggest the possibility of using naturally occurring adult stem cells, which are usually restricted to generate only a limited panel of closely related progeny, to carry out more extensive regeneration projects throughout the body — much in the way that salamanders or newts can replace entire limbs or tails.

“It’s pretty remarkable that this would happen in an adult animal,” said Michael Longaker, MD, professor of plastic and reconstructive surgery. “It changes the way we look at skeletal development and regeneration.”

A paper describing the research was published online Oct. 24 in Nature. Longaker, the Deane P. and Louise Mitchell Professor in the School of Medicine and co-director of the Stanford Institute for Stem Cell Biology and Regenerative Medicine, shares senior authorship with Howard Chang, MD, PhD, professor of dermatology and of genetics and director of Stanford’s Center for Personal Dynamic Regulomes. Graduate students Ava Carter and Ryan Ransom are the lead authors.

Aiding stunted bones

The researchers were studying a common surgical technique called distraction osteogenesis, which is often used in newborns or infants to lengthen abnormally stunted bones in the lower jaw. These malformations occur in conditions such as Pierre-Robin sequence, Treacher Collins syndrome and craniofacial microsomia.

During distraction osteogenesis, the bone is surgically fractured, and an adjustable device is inserted to gradually increase the distance between the ends of the bone over the course of weeks. This encourages new bone growth to fill in the gap and create what resembles a normally developed mandible.

“This is a very special system of regeneration that echoes what normally happens in development,” said Chang, who is the Virginia and D.K. Ludwig Professor of Cancer Genomics and a Howard Hughes Medical Institute investigator. “If you cut the bone, and stretch it, you get more bone. But this regeneration requires mechanical force. We wanted to know how skeletal stem cells respond to this kind of environmental signal.”

Recently, Stanford researchers identified the skeletal stem cell in both mice and humans. Like other stem cells that occur in adult animals, skeletal stem cells are restricted in their ability to generate different cell types. In particular, they can generate bone, cartilage and stroma (the bone’s spongy interior) to repair normal damage like fractures. But the regeneration required by distraction osteogenesis, in which the bone ends are repeatedly moved further apart, is much more extensive.

“How do they know to reform a mandible with the correct shape and function?” said Longaker. “Are they simply recapitulating normal development? And, if so, how?”

Tracking cellular reversion

Carter and Ransom used a technique developed in the Chang laboratory called ATAC-seq to identify gene switches that are turned on in mouse skeletal stem cells in response to the mechanical force of distraction. They found that the cells began to express genes normally found in cranial neural crest cells — cells that arise in humans about five to six weeks after conception and that form the bones, cartilage and connective tissue of the head and face. At the same time, the cells tamped down the expression of genes involved in normal fracture repair.

“This was really a surprise,” Longaker said. “These cells appear to revert back to a cell type responsible for forming the jaw during early development. That’s why the regenerated mandible looks like one formed in early embryogenesis.”
This is an opportunity to change how we think about the development of not just the skeleton, but also other tissues and organs.

In the absence of mechanical force to separate the bone, the skeletal stem cells repaired the fracture without expressing cranial neural crest genes.

Further research identified the focal adhesion kinase molecular pathway as a key player in the ability of the skeletal stem cells to detect and respond to mechanical force. Inhibiting this pathway abolished the ability of the cells to make new bone during distraction osteogenesis.

The finding has provocative clinical implications, the researchers believe.

“Now that we’ve identified one of the molecular pathways responsible for this developmental shift, it may be possible to target the proteins in that pathway to achieve a similar outcome without the requirement for physical force,” Carter said.

“We’re beginning to understand in detail how skeletal stem cells are likely to respond to environmental cues in humans,” Longaker said. “This is an opportunity to change how we think about the development of not just the skeleton, but also other tissues and organs. Can we go back in time after an organ is formed to trigger more extensive regeneration? This at least opens the door to that possibility.”

Longaker is a member of the Stanford Child Health Research Institute, the Stanford Cardiovascular Institute, the Stanford Cancer Institute and Stanford Bio-X. Chang is a member of the Stanford Child Health Research Institute, the Stanford Cancer Institute, the Stanford Neurosciences Institute, Stanford ChEM-H and Stanford Bio-X.

Other Stanford authors are research assistant Ankit Salhotra; former research associate Tripp Leavitt, MD; medical student Owen Marecic; CIRM scholar Michael Lopez; postdoctoral scholars Matthew P. Murphy, MD, Yuning Wei, PhD, and Ruth Ellen Jones, MD; surgical resident Clement Marshall, MD; undergraduate student Ethan Shen; assistant professor of surgery Charles K.F. Chan, PhD; and associate professor of surgery Derrik Wan, MD.

The research was supported by the National Institutes of Health (grants RO1DE026730, U24DE026914, KO8DE024269 and P50HG007735), the Howard Hughes Medical Institute, the Stanford Child Health Research Institute, the Hagey Laboratory for Pediatric Regenerative Medicine, a Steinhart/Reed Award, the Gunn-Oliver Fund and the Scleroderma Research Foundation.

Stanford’s departments of Surgery and of Dermatology also supported the work.

Source