Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
30
12:00 AM - Hepatology 2021
31
1
2
3
4
7
8
9
10
11
13
14
15
16
18
19
20
21
22
23
24
25
27
28
29
30
1
2
World Nanotechnology Congress 2021
2021-03-29    
All Day
Nano Technology Congress 2021 provides you with a unique opportunity to meet up with peers from both academic circle and industries level belonging to Recent [...]
Nanomedicine and Nanomaterials 2021
2021-03-29    
All Day
NanoMed 2021 conference provides the best platform of networking and connectivity with scientist, YRF (Young Research Forum) & delegates who are active in the field [...]
Smart Materials and Nanotechnology
2021-03-29 - 2021-03-30    
All Day
Smart Material 2021 clears a stage to globalize the examination by introducing an exchange amongst ventures and scholarly associations and information exchange from research to [...]
Hepatology 2021
2021-03-30 - 2021-03-31    
All Day
Hepatology 2021 provides a great platform by gathering eminent professors, Researchers, Students and delegates to exchange new ideas. The conference will cover a wide range [...]
Annual Congress on  Dental Medicine and Orthodontics
2021-04-05 - 2021-04-06    
All Day
Dentistry Medicine 2021 is a perfect opportunity intended for International well-being Dental and Oral experts too. The conference welcomes members from every driving university, clinical [...]
World Climate Congress & Expo 2021
2021-04-06 - 2021-04-07    
All Day
Climatology is the study of the atmosphere and weather patterns over time. This field of science focuses on recording and analyzing weather patterns throughout the [...]
European Food Chemistry and Drug Safety Congress
2021-04-12 - 2021-04-13    
All Day
We invite you to meet us at the Food Chemistry Congress 2021, where we will ensure that you’ll have a worthwhile experience with scholars of [...]
Proteomics, Genomics & Bioinformatics
2021-04-12 - 2021-04-13    
All Day
Proteomics 2021 is one of the front platforms for disseminating latest research results and techniques in Proteomics Research, Mass spectrometry, Bioinformatics, Computational Biology, Biochemistry and [...]
Plant Science & Physiology
2021-04-17 - 2021-04-18    
All Day
The PLANT PHYSIOLOGY 2021 theme has broad interests, which address many aspects of Plant Biology, Plant Science, Plant Physiology, Plant Biotechnology, and Plant Pathology. Research [...]
Pollution Control & Sustainable 2021
2021-04-26 - 2021-04-27    
All Day
Pollution Control 2021 conference is organizing with the theme of “Accelerating Innovations for Environmental Sustainability” Conference Series llc LTD organizes environmental conferences series 1000+ Global [...]
Events on 2021-03-30
Hepatology 2021
30 Mar 21
Events on 2021-04-06
Events on 2021-04-17
Events on 2021-04-26
Latest News

Study Sheds Light on How Brain Lets Animals Hunt for Food by Following Smells

Most animals have a keen sense of smell, which assists them in everyday tasks. Now, a new study led by researchers at NYU School of Medicine sheds light on exactly how animals follow smells.

Published online in the journal eLife on Aug. 21, the study measured the behavior of fruit flies as they navigated through wind tunnels in response to odor plumes from apple cider vinegar blowing past.

“Our study begins to dissect the brain functions that enable flies to hunt for food by following odors in the real world,” says senior study author Katherine Nagel, PhD, an assistant professor in the Department of Neuroscience and Physiologyat NYU School of Medicine. “Such insights could have many future applications, from the design of robots that find lost hikers like search dogs, to vehicles that steer themselves based on the combined sensing of odor concentration and wind or water currents.”

The new study is the first to come under the auspices of a grant received by Nagel as part of the NIH BRAIN Initiative. Announced by President Obama in 2013, the initiative seeks to develop tools to better understand the organ’s functions, as well as the mechanisms behind major neurological diseases.

Vinegar Plumes

Movement toward attractive odors is so basic to life that it occurs in organisms without brains, such as bacteria and plankton, say the study authors. Following odors in turbulent air or water is often difficult, however, because odors travel in plumes, which meander downwind or downstream and break up.

Fruit flies make a good model for studying detection of odors, say the authors, because the tools available to dissect brain circuits in flies are exquisite and because these animals likely share circuit mechanisms with humans thanks to evolution. In the current study, experiments showed that flies faced the wind when they sensed an odor on it, used their antennae to determine its direction, and then ran faster upwind toward the odor.

When they lost track of a smell, they danced around and cast about for where they had last smelled it, their actions for the moment appearing to be driven solely by the loss of odor (rather than wind direction). Based on these recorded movements, the researchers then built a computer model capable of detecting odor sources as well as the flies could detect them, and of moving toward them in similar trajectories. The results suggest that fly brains mix independent sensing of air flow, differences in odor over time, and differences in odor across their antennae to hunt for an odor source.

The researchers say their model captured the process by which sensory signals, like wind felt on antennae and the timing of odor concentration changes, are transformed by brain circuits into changes in forward velocity (walking speed) and angular velocity (turning degree).

“Such sensorimotor transformations in every case begin with a sight, sound, or smell and end with muscle movements,” says first study author Efrén Álvarez-Salvado, PhD, a postdoctoral researcher in Nagel’s lab. “Our work provides the framework for dissecting the neural circuits that generate olfactory navigation using genetic tools.”

Along with Nagel and Álvarez-Salvado, study authors from the Neuroscience Institute at NYU Langone Health were Angela LicataBenjamin King, and Nicholas Stavropoulos. Also authors were Erin ConnorMargaret McHugh, and John Crimaldi of the Department of Civil, Environmental and Architectural Engineering at the University of Colorado, Boulder, who designed the turbulent wind tunnels used in the study. Also an author was Jonathan Victor of the Institute for Computational Biomedicine at Weill Cornell Medical College.

The work was supported by National Science Foundation grant IOS-1555933 and PHY-155586, by NIDCD grant R00DC012065, and NIMH grant R01MH109690, and by fellowships from the Klingenstein-Simons, Sloan, and McKnight foundations. Also supporting the work were the Mathers, WhitehallAlfred P. Sloan, and Leon Levy foundations, a NARSAD Young Investigator Award from the Brain and Behavior Research Foundation, an NYU Whitehead Fellowship, the J. Christian Gillin, M.D. Research Award from the Sleep Research Society Foundation, and the Irma T. Hirschl/Weill-Caulier Career Scientist Award.



SOURCE NYU Langone

Related Links

https://med.nyu.edu/