Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
26
27
28
30
2
8
9
10
11
12
13
14
19
21
24
26
28
29
30
1
2
3
4
5
6
Neurology Certification Review 2019
2019-08-29 - 2019-09-03    
All Day
Neurology Certification Review is organized by The Osler Institute and will be held from Aug 29 - Sep 03, 2019 at Holiday Inn Chicago Oakbrook, [...]
Ophthalmology Lecture Review Course 2019
2019-08-31 - 2019-09-05    
All Day
Ophthalmology Lecture Review Course is organized by The Osler Institute and will be held from Aug 31 - Sep 05, 2019 at Holiday Inn Chicago [...]
Emergency Medicine, Sex and Gender Based Medicine, Risk Management/Legal Medicine, and Physician Wellness
2019-09-01 - 2019-09-08    
All Day
Emergency Medicine, Sex and Gender Based Medicine, Risk Management/Legal Medicine, and Physician Wellness is organized by Continuing Education, Inc and will be held from Sep [...]
Medical Philippines 2019
2019-09-03 - 2019-09-05    
All Day
The 4th Edition of Medical Philippines Expo 2019 is organized by Fireworks Trade Exhibitions & Conferences Philippines, Inc. and will be held from Sep 03 [...]
Grand Opening Celebration for Encompass Health Katy
2019-09-04    
4:00 pm - 7:00 pm
Grand Opening Celebration for Encompass Health Katy 23331 Grand Reserve Drive | Katy, Texas Sep 4, 2019 4:00 p.m. CDT Encompass Health will host a grand opening [...]
Galapagos & Amazon 2019 Medical Conference
2019-09-05 - 2019-09-17    
All Day
Galapagos & Amazon 2019 Medical Conference is organized by Unconventional Conventions and will be held from Sep 05 - 17, 2019 at Santa Cruz II, [...]
Mesotherapy Training (Sep 06, 2019)
2019-09-06    
All Day
Mesotherapy Training is organized by Empire Medical Training (EMT), Inc and will be held on Sep 06, 2019 at The Westin New York at Times [...]
Aesthetic Next 2019 Conference
2019-09-06 - 2019-09-08    
All Day
Aesthetic Next 2019 Conference Venue: SEPTEMBER 6-8, 2019 RENAISSANCE DALLAS HOTEL, DALLAS, TX www.AestheticNext.com On behalf Aesthetic Record EMR, we would like to invite you [...]
Anti-Aging - Modules 1 & 2 (Sep, 2019)
2019-09-07    
All Day
Anti-Aging - Modules 1 & 2 is organized by Empire Medical Training (EMT), Inc and will be held on Sep 07, 2019 at The Westin [...]
Allergy Test and Treatment (Sep, 2019)
2019-09-15    
All Day
Allergy Test and Treatment is organized by Empire Medical Training (EMT), Inc and will be held on Sep 15, 2019 at Aloft Chicago O'Hare, Chicago, [...]
Biosimilars & Biologics Summit 2019
2019-09-16 - 2019-09-17    
All Day
TBD
Biosimilars & Biologics Summit 2019 is organized by Lexis Conferences Ltd and will be held from Sep 16 - 17, 2019 at London, England, United [...]
X Anniversary International Exhibition of equipment and technologies for the pharmaceutical industry PHARMATechExpo
2019-09-17 - 2019-09-19    
All Day
X Anniversary International Exhibition of equipment and technologies for the pharmaceutical industry PHARMATechExpo is organized by Laboratory Marketing Technology (LMT) Company, Shupyk National Medical Academy [...]
2019 Physician and CIO Forum
2019-09-18 - 2019-09-19    
All Day
Event Location MEDITECH Conference Center 1 Constitution Way Foxborough, MA Date : September 18th - 19th Conference: Wednesday, September 18  8:00 AM - 5:00 PM [...]
Stress, Depression, Anxiety and Resilience Summit 2019
2019-09-20 - 2019-09-21    
All Day
Stress, Depression, Anxiety and Resilience Summit is organized by Lexis Conferences Ltd and will be held from Sep 20 - 21, 2019 at Vancouver Convention [...]
Sclerotherapy for Physicians & Nurses Course - Orlando (Sep 20, 2019)
2019-09-20    
All Day
Sclerotherapy for Physicians & Nurses Course is organized by Empire Medical Training (EMT), Inc and will be held on Sep 20, 2019 at Sheraton Orlando [...]
Complete, Hands-on Dermal Filler (Sep 22, 2019)
2019-09-22    
All Day
Complete, Hands-on Dermal Filler is organized by Empire Medical Training (EMT), Inc and will be held on Sep 22, 2019 at Sheraton Orlando Lake Buena [...]
The MedTech Conference 2019
2019-09-23 - 2019-09-25    
All Day
The MedTech Conference 2019 is organized by Advanced Medical Technology Association (AdvaMed) and will be held from Sep 23 - 25, 2019 at Boston Convention [...]
23 Sep
2019-09-23 - 2019-09-24    
All Day
ABOUT 2ND WORLD CONGRESS ON RHEUMATOLOGY & ORTHOPEDICS Scientific Federation will be hosting 2nd World Congress on Rheumatology and Orthopedics this year. This exciting event [...]
25 Sep
2019-09-25 - 2019-09-26    
All Day
ABOUT 18TH WORLD CONGRESS ON NUTRITION AND FOOD CHEMISTRY Nutrition Conferences Committee extends its welcome to 18th World Congress on Nutrition and Food Chemistry (Nutri-Food [...]
ACP & Stem Cell Therapies for Pain Management (Sep 27, 2019)
2019-09-27    
All Day
ACP & Stem Cell Therapies for Pain Management is organized by Empire Medical Training (EMT), Inc and will be held on Sep 27, 2019 at [...]
01 Oct
2019-10-01 - 2019-10-02    
All Day
The UK’s leading health technology and smart health event, bringing together a specialist audience of over 4,000 health and care professionals covering IT and clinical [...]
Events on 2019-08-29
Events on 2019-08-31
Events on 2019-09-03
Medical Philippines 2019
3 Sep 19
Pasay City
Events on 2019-09-04
Events on 2019-09-05
Galapagos & Amazon 2019 Medical Conference
5 Sep 19
Galapagos Islands
Events on 2019-09-06
Events on 2019-09-07
Events on 2019-09-15
Events on 2019-09-16
Events on 2019-09-18
2019 Physician and CIO Forum
18 Sep 19
Foxborough
Events on 2019-09-22
Events on 2019-09-23
The MedTech Conference 2019
23 Sep 19
Boston
23 Sep
Events on 2019-09-25
Events on 2019-09-27
Events on 2019-10-01
01 Oct
Latest News

Ultrasound releases drug to alter activity in targeted brain areas in rats

Stanford researchers used focused ultrasound to pry molecules of an anesthetic loose from nanoparticles. The drug’s release modified activity in brain regions targeted by the ultrasound beam.

Stanford University School of Medicine scientists have developed a noninvasive way of delivering drugs to within a few millimeters of a desired point in the brain.

The method, tested in rats, uses focused ultrasound to jiggle drug molecules loose from nanoparticle “cages” that have been injected into the bloodstream.

In a proof-of-principle study, the researchers showed that pharmacologically active amounts of a fast-acting drug could be released from these cages in small areas of the rats’ brains targeted by a beam of focused ultrasound. The drug went to work immediately, reducing neural activity in the targeted area — but only while the ultrasound device was active and only where the ultrasound intensity exceeded a certain threshold. By modifying the strength and duration of the beam, the investigators could fine-tune the neural inhibition.

While the drug used in this study was propofol, an anesthetic commonly used in surgery, in principle the same approach could work for many drugs with widely differing pharmacological actions and psychiatric applications, and even for some chemotherapeutic drugs used to combat cancer.

By turning up the ultrasound intensity and monitoring brainwide metabolic activity, the researchers could also observe the drug’s secondary effects on distant downstream brain regions receiving input from the targeted area, said Raag Airan, MD, PhD, an assistant professor of neuroradiology. In this way, the researchers were able to noninvasively map out the connections among disparate circuits in the living brain.

A paper describing the study’s findings was published online Nov. 7 in Neuron. Airan is the senior author. Lead authorship is shared by Jeffrey Wang, a student in the MD-PhD program, and postdoctoral scholar Muna Aryal, PhD.

A kindred technology known as optogenetics, pioneered by Karl Deisseroth, MD, PhD, a Stanford professor of bioengineering and of psychiatry and behavioral sciences under whom Airan completed his PhD work a decade ago, uses invasive gene delivery to render specified classes of nerve cells vulnerable to precise experimental manipulation. Airan’s approach employs noninvasive pharmacological methods to achieve similar control of neural activity.

“This important work establishes that ultrasonic drug uncaging appears to have the required precision to tune the brain’s activity via targeted drug application,” said Deisseroth, who wasn’t involved in the study. “The powerful new technique could be used to test optogenetically inspired ideas, derived initially from rodent studies, in large animals — and perhaps soon in clinical trials.”

‘We’re optimistic’

The new technology could not only speed advances in neuroscientific research but move rapidly into clinical practice, Airan said.“While this study was done in rats, each component of our nanoparticle complex has been approved for at least investigational human use by the Food and Drug Administration, and focused ultrasound is commonly employed in clinical procedures at Stanford,” he said. “So, we’re optimistic about this procedure’s translational potential.”

Harmless at the low intensities routinely used for imaging bodily tissues, high-intensity focused ultrasound is approved for the ablation, or deliberate destruction, of certain tissues, including portions of a central brain structure called the thalamus to treat the condition known as essential tremor.

For the new study, “we turned down the dials” on the ultrasound device, Airan said. The intensity of the ultrasound used in these experiments was about 1/10th to 1/100th of the intensity used in clinical ablation procedures. The ultrasound in these experiments was delivered in a series of short staccato pulses separated by periods of rest, giving the targeted brain tissue plenty of time to cool off between pulses. Rats exposed numerous times to the experimental protocol showed no evidence of tissue damage from it.

The nanoparticles, which Airan has been perfecting for several years, are biocompatible, biodegradable, liquid-filled spheres averaging 400 nanometers (about 15-millionths of an inch) in diameter. Their surfaces consist of a copolymer matrix in which the drug of choice is encaged. Roughly 3 million molecules of a drug typically dot the surface of one of these nanoparticles.

Each nanoparticle encloses a droplet of a substance called perfluorocarbon. Buffeted by ultrasound waves at the right frequency, these liquid cores begin shaking and expanding until the copolymer matrix coating the surface ruptures, setting the trapped drug molecules free. Propofol, like all psychoactive drugs, easily diffuses through the otherwise formidable blood-brain barrier. But having crossed this barrier, the drug is quickly soaked up by brain tissue, so that it never gets farther than about a half-millimeter from the capillary where it’s been released.

Airan and his colleagues injected these particles intravenously into experimental rats and explored focused ultrasound’s potential for targeted drug delivery.

Initially, they measured nerve cells’ activity in the visual cortex, an area in the back of the brain that’s activated by visual stimuli, in response to flashes of light aimed at the rats’ eyes. Focusing the ultrasound beam on that brain area, they watched electrical activity there plunge while the beam was being transmitted, then recover within about 10 seconds after the device was shut off. This drop-off in the visual cortex’s electrical activity, which is what you’d expect from the release of an anesthetic there, grew more pronounced with increasing ultrasound intensity, and didn’t occur at all when the rats had been injected instead with drug-free nanoparticles.

In contrast, activity in the motor cortex, a brain area not involved in vision, in response to light flashes directed at the rats’ eyes was not diminished when ultrasound was applied there.  But ultrasound targeting the lateral geniculate nucleus, a brain area that relays visual information to the visual cortex, did reduce electrical activity in the visual cortex. This showed that propofol release in one brain structure can produce secondary effects in another, distant region receiving inputs from that structure.

Brainwide metabolic response

Next, Airan’s team monitored the brainwide metabolic response to focused ultrasound by using positron emission tomography to measure brainwide uptake of a radioactive analog of glucose — glucose is the brain’s chief energy source — in the rats. When the injected nanoparticles were blanks, there was no effect in ultrasound-exposed areas. But with propofol-loaded nanoparticles, the metabolism dropped, meaning there was reduced neural activity in these ultrasound-exposed regions. This inhibition increased with increasing ultrasound intensity. Cranking the ultrasound level high enough also triggered selectively diminished activity in distant brain regions known to receive inputs from the ultrasound-exposed area.

“We hope to use this technology to noninvasively predict the results of excising or inactivating a particular small volume of brain tissue in patients slated for neurosurgery,” said Airan. “Will inactivating or removing that small piece of tissue achieve the desired effect — for example, stopping epileptic seizure activity? Will it cause any unexpected side effects?”

Other study co-authors are postdoctoral scholar Qian Zhong, PhD, and medical student Daivik Vyas.

Airan is a member of Stanford Bio-X, the Stanford Child Health Research Institute and the Wu Tsai Neurosciences Institute.

The work was funded by the National Institutes of Health (grants RF1MH114252 and U54CA199075), the Stanford Center for Cancer Nanotechnology Excellence, the Foundation of the American Society for Neuroradiology, the Wallace H. Coulter Foundation, the Dana Foundation and the Wu Tsai Neurosciences Institute.

Stanford’s Office of Technology Licensing has filed patent applications on intellectual property associated with the new technology.

Stanford’s Department of Radiology also supported the work.

Source