Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
26
27
28
29
30
31
2
3
4
5
6
7
8
9
10
8:30 AM - HIMSS Europe
11
12
13
14
15
16
17
18
19
20
21
22
26
27
28
29
1
2
3
4
5
6
e-Health 2025 Conference and Tradeshow
2025-06-01 - 2025-06-03    
10:00 am - 5:00 pm
The 2025 e-Health Conference provides an exciting opportunity to hear from your peers and engage with MEDITECH.
HIMSS Europe
2025-06-10 - 2025-06-12    
8:30 am - 5:00 pm
Transforming Healthcare in Paris From June 10-12, 2025, the HIMSS European Health Conference & Exhibition will convene in Paris to bring together Europe’s foremost health [...]
38th World Congress on  Pharmacology
2025-06-23 - 2025-06-24    
11:00 am - 4:00 pm
About the Conference Conference Series cordially invites participants from around the world to attend the 38th World Congress on Pharmacology, scheduled for June 23-24, 2025 [...]
2025 Clinical Informatics Symposium
2025-06-24 - 2025-06-25    
11:00 am - 4:00 pm
Virtual Event June 24th - 25th Explore the agenda for MEDITECH's 2025 Clinical Informatics Symposium. Embrace the future of healthcare at MEDITECH’s 2025 Clinical Informatics [...]
International Healthcare Medical Device Exhibition
2025-06-25 - 2025-06-27    
8:30 am - 5:00 pm
Japan Health will gather over 400 innovative healthcare companies from Japan and overseas, offering a unique opportunity to experience cutting-edge solutions and connect directly with [...]
Electronic Medical Records Boot Camp
2025-06-30 - 2025-07-01    
10:30 am - 5:30 pm
The Electronic Medical Records Boot Camp is a two-day intensive boot camp of seminars and hands-on analytical sessions to provide an overview of electronic health [...]
Events on 2025-06-01
Events on 2025-06-10
HIMSS Europe
10 Jun 25
France
Events on 2025-06-23
38th World Congress on  Pharmacology
23 Jun 25
Paris, France
Events on 2025-06-24
Events on 2025-06-25
International Healthcare Medical Device Exhibition
25 Jun 25
Suminoe-Ku, Osaka 559-0034
Events on 2025-06-30
Articles News

Using machine learning to transform the handling of missing data in EHRs

EMR Industry

A thorough systematic review assessing methods for dealing with missing data in electronic health records (EHRs) was carried out by researchers from Peking University’s National Institute of Health Data Science and Peking University People’s Hospital’s Department of Clinical Epidemiology and Biostatistics. The study, which was published in Health Data Science, emphasizes how machine learning techniques are becoming more and more crucial than conventional statistical methods for handling missing data situations.

Because they allow for analysis of clinical trials, treatment effectiveness studies, and genetic association research, electronic health records have emerged as a key component of contemporary healthcare research. Missing data, however, continues to be a problem since it can introduce bias and compromise the validity of results. This study examined 46 research papers from 2010 to 2024, methodically contrasting the effectiveness of contemporary machine learning techniques like k-Nearest Neighbors (KNN) and Generative Adversarial Networks (GANs) with more conventional statistical techniques like Multiple Imputation by Chained Equations (MICE).

The results show that while addressing both longitudinal and cross-sectional datasets, machine learning techniques—in particular, GAN-based methods and context-aware time-series imputation (CATSI)—consistently performed better than conventional statistical approaches. While probabilistic principle component analysis (PCA) and MICE performed better for cross-sectional datasets, Med.KNN and CATSI performed better for longitudinal data.

The potential of machine learning techniques to solve missing data in EHRs is substantial. The necessity for uniform benchmarking analyses across various datasets and missingness circumstances is highlighted by the fact that no single method provides a solution that is generally applicable.

Associate Professor Dr. Huixin Liu of Peking University People’s Hospital

The opacity of machine learning models, the variability of EHR datasets, and the absence of common standards for evaluating technique success are some of the major issues the report also highlights. Future studies seek to create benchmarking datasets for thorough assessment and standardize the process for managing missing EHR data.

According to Dr. Shenda Hong, an assistant professor at Peking University’s National Institute of Health Data Science, “our ultimate goal is to create a universally accepted protocol for handling missing data in electronic health records, ensuring more reliable and reproducible findings across medical research,” she added.

By providing insights that can aid in bridging the gap between robust analysis and data paucity, this research represents a big step toward tackling one of the most critical difficulties in digital healthcare research.