Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
31
1
2
3
4
5
6
8
9
10
12
13
14
16
17
18
19
20
21
22
24
26
27
29
30
1
2
3
4
Natural, Traditional & Alternative Medicine
2021-06-07 - 2021-06-08    
All Day
Natural, Traditional and Alternative Medicine mainly focuses on the latest and exciting innovations in every area of Natural Medicine & Natural Products, Complementary and Alternative [...]
Advances In Natural Medicines, Nutraceuticals & Neurocognition
2021-06-11 - 2021-06-12    
All Day
The two-days meeting goes to be an occurrence to appear forward to for its enlightening symposiums & workshops from established consultants of the sphere, exceptional [...]
Automation and Artificial Intelligence
2021-06-15 - 2021-06-16    
All Day
Conference Series invites all the experts and researchers from the Automation and Artificial Intelligence sector all over the world to attend “2nd International Conference on [...]
Green Chemistry and Technology 2021
2021-06-23 - 2021-06-24    
All Day
Green Chemistry and Technology is a global overview with the Theme:: “Sustainable Chemistry and its key role in waste management and essential public service to [...]
Food Science & Nutrition
2021-06-25 - 2021-06-26    
All Day
Food Science is a multi-disciplinary field involving chemistry, biochemistry, nutrition, microbiology, and engineering to give one the scientific knowledge to solve real problems associated with [...]
Food Safety and Health
2021-06-28 - 2021-06-29    
All Day
The main objective is to bring all the leading academic scientists, researchers and research scholars together to exchange and share their experiences and research results [...]
Food Microbiology
2021-06-28 - 2021-06-29    
All Day
This conference provide a platform to share the new ideas and advancing technologies in the field of Food Microbiology and Food Technology. The objective of [...]
Events on 2021-06-07
Events on 2021-06-15
Events on 2021-06-23
Events on 2021-06-25
Events on 2021-06-28
Latest News

A novel and practical approach to applying predictive analytics in healthcare.

EMR Industry

Promoting a culture of transparency, accuracy, and respect for patient data could be essential to unlocking the full potential of AI in healthcare, according to a healthcare data analyst.

The majority of healthcare professionals across the Asia-Pacific region now acknowledge the importance of adopting AI technologies to enhance care delivery, boost clinical and operational efficiency, and improve equitable access and health outcomes—particularly in the face of increasing demand and workforce shortages.

According to the latest Philips 2025 Future Health Index report, most surveyed professionals in the region believe that digital tools, including AI and predictive analytics, can help lower hospital admission rates and enable earlier interventions that save lives. Many are also actively engaged in developing and implementing these technologies within their organisations.

However, concerns around trust and effective implementation continue to persist. The Philips survey revealed that many healthcare professionals feel current technologies are not tailored to their specific needs. Additionally, there are worries about potential data biases in AI systems that could exacerbate disparities in health outcomes.

In a follow-up article published in the *Journal of Intelligent Learning Systems and Applications* by Scientific Research Publishing, Rohan Desai examined these challenges in greater depth and outlined a roadmap for advancing research and practical implementation of predictive analytics in healthcare.

The proposed roadmap emphasizes the use of hybrid machine learning models, such as stacking, boosting techniques, and combinations like neural network–random forest hybrids. These approaches harness the strengths of different algorithms: stacking can reduce bias and variance by combining multiple models, boosting iteratively improves performance, and hybrid models are capable of capturing complex nonlinear patterns while preserving a level of interpretability.

A recent study from the United States also explored key barriers to implementing predictive analytics in healthcare. According to business intelligence analyst Rohan Desai, major challenges include data integration, data quality, model interpretability, and ensuring clinical relevance.