Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
30
31
1
3
4
5
6
7
12:00 AM - Heart Ailments
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
25
26
27
28
29
30
1
2
3
Diabetes, Obesity and Its Complications
2021-09-02 - 2021-09-03    
All Day
Diabetes Congress 2021 aims to provide a platform to share knowledge, expertise along with unparalleled networking opportunities between a large number of medical and industrial [...]
Heart Ailments
2021-09-07 - 2021-09-08    
All Day
International conference and Expo on Heart Ailments Webinar held at Zoom or WebEx online on September 07-08, 2021. The conference is concentrated on the theme [...]
Computer Graphics & Animation 2021
2021-09-24 - 2021-09-25    
All Day
Computer graphics is branch of Computer Science and Technology It’s a graphical pattern of an image or objects which created by using specific software and [...]
Events on 2021-09-02
Events on 2021-09-07
Heart Ailments
7 Sep 21
Events on 2021-09-24
Articles

Algorithm Uses EHR Data To Identify Diabetes at Earliest Possible Date

diabetes

Researchers have developed an algorithm that can evaluate electronic health records to determine whether the patient has diabetes, FierceHealthIT reports.

Details of Algorithm

The algorithm, published in BioMedCentral, focuses on determining the earliest possible data of diagnosis in close to real time.

It evaluates information that is regularly documented and can be extracted from structured data fields, including:

  • Past medical history;
  • Problem list;
  • Medications; and
  • Laboratory results.

Each element is given a point value. After reaching a certain threshold, the algorithm identifies the presence of diabetes and calculates the earliest date that the disease could have been diagnosed.

Algorithm’s Accuracy

The researchers compared the algorithm’s findings with the opinion of a physician and found that the algorithm agreed on the date of diagnosis in 78.4% of cases.

It established a date of diagnosis that was within three months of the physician’s date in 94% of cases.

Experts say the algorithm could be effective in reaching patients who do not visit a physician regularly (Hall, FierceHealthIT, 8/2). Source