Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
29
1
2
3
4
6
7
8
9
10
11
13
14
15
16
17
7:30 AM - HLTH 2025
18
19
20
22
23
24
25
26
27
28
29
30
31
1
2
12:00 AM - NextGen UGM 2025
TigerConnect + eVideon Unite Healthcare Communications
2025-09-30    
10:00 am
TigerConnect’s acquisition of eVideon represents a significant step forward in our mission to unify healthcare communications. By combining smart room technology with advanced clinical collaboration [...]
Pathology Visions 2025
2025-10-05 - 2025-10-07    
8:00 am - 5:00 pm
Elevate Patient Care: Discover the Power of DP & AI Pathology Visions unites 800+ digital pathology experts and peers tackling today's challenges and shaping tomorrow's [...]
AHIMA25  Conference
2025-10-12 - 2025-10-14    
9:00 am - 10:00 pm
Register for AHIMA25  Conference Today! HI professionals—Minneapolis is calling! Join us October 12-14 for AHIMA25 Conference, the must-attend HI event of the year. In a city known for its booming [...]
HLTH 2025
2025-10-17 - 2025-10-22    
7:30 am - 12:00 pm
One of the top healthcare innovation events that brings together healthcare startups, investors, and other healthcare innovators. This is comparable to say an investor and [...]
Federal EHR Annual Summit
2025-10-21 - 2025-10-23    
9:00 am - 10:00 pm
The Federal Electronic Health Record Modernization (FEHRM) office brings together clinical staff from the Department of Defense, Department of Veterans Affairs, Department of Homeland Security’s [...]
NextGen UGM 2025
2025-11-02 - 2025-11-05    
12:00 am
NextGen UGM 2025 is set to take place in Nashville, TN, from November 2 to 5 at the Gaylord Opryland Resort & Convention Center. This [...]
Events on 2025-10-05
Events on 2025-10-12
AHIMA25  Conference
12 Oct 25
Minnesota
Events on 2025-10-17
HLTH 2025
17 Oct 25
Nevada
Events on 2025-10-21
Events on 2025-11-02
NextGen UGM 2025
2 Nov 25
TN

Events

Case Studies

How the Provenance of EHR Data Matters for Research: A Case Example Using System Mapping

electronic medical record software

Submission Type

Case Study

Abstract

Introduction: The use of electronic health records (EHRs) for research is proceeding rapidly, driven by computational power, analytical techniques, and policy. However, EHR-based research is limited by the complexity of EHR data and a lack of understanding about data provenance, meaning the context under which the data were collected. This paper presents system flow mapping as a method to help researchers more fully understand the provenance of their EHR data as it relates to local workflow. We provide two specific examples of how this method can improve data identification, documentation, and processing.

Background: EHRs store clinical and administrative data, often in unstructured fields. Each clinical system has a unique and dynamic workflow and EHR, which may be influenced by broader context such as documentation required for billing.

Methods: We present a case study with two examples of using system flow mapping to characterize EHR data for a local colorectal cancer screening process.

Findings: System flow mapping demonstrated that information entered into the EHR during clinical practice required interpretation and transformation before it could be accurately applied to research. We illustrate how system flow mapping shaped our knowledge of the quality and completeness of data in two examples: 1) determining colonoscopy indication as recorded in the EHR, and 2) discovering a specific EHR form that captured family history.

Discussion: Researchers who do not consider data provenance risk compiling data that are systematically incomplete or incorrect. For example, researchers who are not familiar with the clinical workflow under which data were entered might miss or misunderstand patient information or procedure and diagnostic codes.

Conclusions/Next steps: Data provenance is a fundamental characteristic of research data from EHRs. Given the diversity of EHR platforms and system workflows, researchers need tools for evaluating and reporting data availability, quality, and transformations. Our case study illustrates how system mapping can inform researchers about the provenance of their data as it pertains to local workflows.

Download Here