Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
29
30
1
2
3
4
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
24
25
26
27
28
29
30
31
1
Food Safety and Health
2021-06-28 - 2021-06-29    
All Day
The main objective is to bring all the leading academic scientists, researchers and research scholars together to exchange and share their experiences and research results [...]
Food Microbiology
2021-06-28 - 2021-06-29    
All Day
This conference provide a platform to share the new ideas and advancing technologies in the field of Food Microbiology and Food Technology. The objective of [...]
Smart Robots and Artificial Intelligence 2021
2021-07-05 - 2021-07-06    
All Day
Robotics is an imperative development that is related to the well-being of all individuals. A Robot is a useful gadget, multitasking operator sketched to move [...]
World Plant and Soil Science Congress
2021-07-23 - 2021-07-24    
All Day
It’s our greatest pleasure to welcome you to the official website of 2nd World Plant and Soil Science Congress that aims at bringing together the [...]
Food and Beverages
2021-07-26 - 2021-07-27    
12:00 am
The conference highlights the theme “Global leading improvement in Food Technology & Beverages Production” aimed to provide an opportunity for the professionals to discuss the [...]
Events on 2021-06-28
Events on 2021-07-05
Events on 2021-07-23
Events on 2021-07-26
Food and Beverages
26 Jul 21
Latest News

Reinforcement learning enhances AI in cybersecurity

AI algorithms and machine learning efficiently handle large volumes of data swiftly, aiding network defenders in sifting through numerous alerts to differentiate potential threats from false positives. Reinforcement learning plays a crucial role in the benefits AI offers to cybersecurity, mimicking human learning through experience and trial and error.

Reinforcement learning diverges from supervised learning by concentrating on agents learning from their own actions and feedback within a given environment. This concept revolves around maximizing learning capabilities over time by utilizing rewards and punishments, thereby enhancing future decision-making.

Application of Reinforcement Learning: The escalation of alert fatigue among Security Operations Center (SOC) analysts has emerged as a significant concern for Chief Information Security Officers, given the risk of burnout and high turnover rates. Solutions capable of filtering alert noise, enabling analysts to prioritize genuine threats, can save organizations valuable time and resources.

AI technologies play a pivotal role in combating large-scale social engineering, phishing, and spam campaigns by preemptively understanding and identifying attack kill chains. Given resource constraints, reinforcement learning proves advantageous in identifying sophisticated dynamic attacks by analyzing patterns from past failed and successful attempts.

Expanding beyond detection, reinforcement learning holds promise in predictive cybersecurity, leveraging past experiences and patterns to anticipate future threats. This proactive approach enhances cybersecurity by optimizing resource allocation, coordinating with existing systems, and deploying countermeasures effectively.

Challenges of Reinforcement Learning: The proliferation of networked devices poses a challenge for reinforcement learning in cybersecurity, compounded by remote work and personal device usage. Nonetheless, integrating reinforcement learning with the zero-trust approach can fortify IT security.

Access to adequate data presents another obstacle, particularly during the initial stages when limited data availability may distort learning cycles or prompt flawed defensive actions. Adversaries may exploit these limitations by manipulating data to deceive learning algorithms, emphasizing the need for careful integration of reinforcement learning in cybersecurity technologies.